Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm
نویسندگان
چکیده
In situ reduction of selenite to elemental selenium (Se(0)), by microorganisms in sediments and soils is an important process and greatly affects the environmental distribution and the biological effects of selenium. However, the mechanism behind such a biological process remains unrevealed yet. Here we use Shewanella oneidensis MR-1, a widely-distributed dissimilatory metal-reducing bacterium with a powerful and diverse respiration capability, to evaluate the involvement of anaerobic respiration system in the microbial selenite reduction. With mutants analysis, we identify fumarate reductase FccA as the terminal reductase of selenite in periplasm. Moreover, we find that such a reduction is dependent on central respiration c-type cytochrome CymA. In contrast, nitrate reductase, nitrite reductase, and the Mtr electron transfer pathway do not work as selenite reductases. These findings reveal a previously unrecognized role of anaerobic respiration reductases of S. oneidensis MR-1 in selenite reduction and geochemical cycles of selenium in sediments and soils.
منابع مشابه
Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1.
Dissimilatory microbial reduction of insoluble Fe(III) oxides is a geochemically and ecologically important process which involves the transfer of cellular, respiratory electrons from the cytoplasmic membrane to insoluble, extracellular, mineral-phase electron acceptors. In this paper evidence is provided for the function of the periplasmic fumarate reductase FccA and the decaheme c-type cytoch...
متن کاملSelenite and tellurite reduction by Shewanella oneidensis.
Shewanella oneidensis MR-1 reduces selenite and tellurite preferentially under anaerobic conditions. The Se(0) and Te(0) deposits are located extracellularly and intracellularly, respectively. This difference in localization and the distinct effect of some inhibitors and electron acceptors on these reduction processes are taken as evidence of two independent pathways.
متن کاملExtracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1.
Shewanella species are renowned for their respiratory versatility, including their ability to respire poorly soluble substrates by using enzymatic machinery that is localized to the outside of the cell. The ability to engage in "extracellular respiration" to date has focused primarily on respiration of minerals. Here, we identify two gene clusters in Shewanella oneidensis strain MR-1 that each ...
متن کاملThe membrane-bound tetrahaem c-type cytochrome CymA interacts directly with the soluble fumarate reductase in Shewanella.
Shewanella spp. demonstrate great variability in the use of terminal electron acceptors in anaerobic respiration; these include nitrate, fumarate, DMSO, trimethylamine oxide, sulphur compounds and metal oxides. These pathways open up possible applications in bioremediation. The wide variety of respiratory substrates for Shewanella is correlated with the evolution of several multi-haem membrane-...
متن کاملRespiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes
Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobacter sulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type c...
متن کامل